MakeItFrom.com
Menu (ESC)

S17400 Stainless Steel vs. C17465 Copper

S17400 stainless steel belongs to the iron alloys classification, while C17465 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is S17400 stainless steel and the bottom bar is C17465 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 11 to 21
5.3 to 36
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
44
Shear Strength, MPa 570 to 830
210 to 540
Tensile Strength: Ultimate (UTS), MPa 910 to 1390
310 to 930
Tensile Strength: Yield (Proof), MPa 580 to 1250
120 to 830

Thermal Properties

Latent Heat of Fusion, J/g 280
210
Maximum Temperature: Mechanical, °C 850
210
Melting Completion (Liquidus), °C 1440
1080
Melting Onset (Solidus), °C 1400
1030
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 17
220
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
22 to 51
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
23 to 52

Otherwise Unclassified Properties

Base Metal Price, % relative 14
45
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.7
4.1
Embodied Energy, MJ/kg 39
64
Embodied Water, L/kg 130
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 160
47 to 90
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 4060
64 to 2920
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 32 to 49
9.7 to 29
Strength to Weight: Bending, points 27 to 35
11 to 24
Thermal Diffusivity, mm2/s 4.5
64
Thermal Shock Resistance, points 30 to 46
11 to 33

Alloy Composition

Aluminum (Al), % 0
0 to 0.2
Beryllium (Be), % 0
0.15 to 0.5
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 3.0 to 5.0
95.7 to 98.7
Iron (Fe), % 70.4 to 78.9
0 to 0.2
Lead (Pb), % 0
0.2 to 0.6
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 3.0 to 5.0
1.0 to 1.4
Niobium (Nb), % 0.15 to 0.45
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.5
Residuals, % 0
0 to 0.5