MakeItFrom.com
Menu (ESC)

S17400 Stainless Steel vs. C19100 Copper

S17400 stainless steel belongs to the iron alloys classification, while C19100 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is S17400 stainless steel and the bottom bar is C19100 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 11 to 21
17 to 37
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
43
Shear Strength, MPa 570 to 830
170 to 330
Tensile Strength: Ultimate (UTS), MPa 910 to 1390
250 to 630
Tensile Strength: Yield (Proof), MPa 580 to 1250
75 to 550

Thermal Properties

Latent Heat of Fusion, J/g 280
210
Maximum Temperature: Mechanical, °C 850
200
Melting Completion (Liquidus), °C 1440
1080
Melting Onset (Solidus), °C 1400
1040
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 17
250
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
55
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
56

Otherwise Unclassified Properties

Base Metal Price, % relative 14
33
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 39
43
Embodied Water, L/kg 130
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 160
60 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 4060
24 to 1310
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 32 to 49
7.7 to 20
Strength to Weight: Bending, points 27 to 35
9.9 to 18
Thermal Diffusivity, mm2/s 4.5
73
Thermal Shock Resistance, points 30 to 46
8.9 to 22

Alloy Composition

Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 3.0 to 5.0
96.5 to 98.6
Iron (Fe), % 70.4 to 78.9
0 to 0.2
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 3.0 to 5.0
0.9 to 1.3
Niobium (Nb), % 0.15 to 0.45
0
Phosphorus (P), % 0 to 0.040
0.15 to 0.35
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tellurium (Te), % 0
0.35 to 0.6
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5