MakeItFrom.com
Menu (ESC)

S17400 Stainless Steel vs. C41500 Brass

S17400 stainless steel belongs to the iron alloys classification, while C41500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is S17400 stainless steel and the bottom bar is C41500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11 to 21
2.0 to 42
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
42
Shear Strength, MPa 570 to 830
220 to 360
Tensile Strength: Ultimate (UTS), MPa 910 to 1390
340 to 560
Tensile Strength: Yield (Proof), MPa 580 to 1250
190 to 550

Thermal Properties

Latent Heat of Fusion, J/g 280
200
Maximum Temperature: Mechanical, °C 850
180
Melting Completion (Liquidus), °C 1440
1030
Melting Onset (Solidus), °C 1400
1010
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 17
120
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
28
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
29

Otherwise Unclassified Properties

Base Metal Price, % relative 14
30
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 2.7
2.8
Embodied Energy, MJ/kg 39
45
Embodied Water, L/kg 130
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 160
11 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 4060
160 to 1340
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 32 to 49
11 to 18
Strength to Weight: Bending, points 27 to 35
12 to 17
Thermal Diffusivity, mm2/s 4.5
37
Thermal Shock Resistance, points 30 to 46
12 to 20

Alloy Composition

Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 3.0 to 5.0
89 to 93
Iron (Fe), % 70.4 to 78.9
0 to 0.050
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 3.0 to 5.0
0
Niobium (Nb), % 0.15 to 0.45
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
1.5 to 2.2
Zinc (Zn), % 0
4.2 to 9.5
Residuals, % 0
0 to 0.5