MakeItFrom.com
Menu (ESC)

S17400 Stainless Steel vs. C43400 Brass

S17400 stainless steel belongs to the iron alloys classification, while C43400 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is S17400 stainless steel and the bottom bar is C43400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11 to 21
3.0 to 49
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
42
Shear Strength, MPa 570 to 830
250 to 390
Tensile Strength: Ultimate (UTS), MPa 910 to 1390
310 to 690
Tensile Strength: Yield (Proof), MPa 580 to 1250
110 to 560

Thermal Properties

Latent Heat of Fusion, J/g 280
190
Maximum Temperature: Mechanical, °C 850
170
Melting Completion (Liquidus), °C 1440
1020
Melting Onset (Solidus), °C 1400
990
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 17
140
Thermal Expansion, µm/m-K 11
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
31
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
32

Otherwise Unclassified Properties

Base Metal Price, % relative 14
28
Density, g/cm3 7.8
8.6
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 39
44
Embodied Water, L/kg 130
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 160
19 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 4060
57 to 1420
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 32 to 49
10 to 22
Strength to Weight: Bending, points 27 to 35
12 to 20
Thermal Diffusivity, mm2/s 4.5
41
Thermal Shock Resistance, points 30 to 46
11 to 24

Alloy Composition

Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 3.0 to 5.0
84 to 87
Iron (Fe), % 70.4 to 78.9
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 3.0 to 5.0
0
Niobium (Nb), % 0.15 to 0.45
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.4 to 1.0
Zinc (Zn), % 0
11.4 to 15.6
Residuals, % 0
0 to 0.5