MakeItFrom.com
Menu (ESC)

S17400 Stainless Steel vs. C53800 Bronze

S17400 stainless steel belongs to the iron alloys classification, while C53800 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is S17400 stainless steel and the bottom bar is C53800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11 to 21
2.3
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
40
Shear Strength, MPa 570 to 830
470
Tensile Strength: Ultimate (UTS), MPa 910 to 1390
830
Tensile Strength: Yield (Proof), MPa 580 to 1250
660

Thermal Properties

Latent Heat of Fusion, J/g 280
190
Maximum Temperature: Mechanical, °C 850
160
Melting Completion (Liquidus), °C 1440
980
Melting Onset (Solidus), °C 1400
800
Specific Heat Capacity, J/kg-K 480
360
Thermal Conductivity, W/m-K 17
61
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 14
37
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 2.7
3.9
Embodied Energy, MJ/kg 39
64
Embodied Water, L/kg 130
420

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 160
18
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 4060
2020
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 32 to 49
26
Strength to Weight: Bending, points 27 to 35
22
Thermal Diffusivity, mm2/s 4.5
19
Thermal Shock Resistance, points 30 to 46
31

Alloy Composition

Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 3.0 to 5.0
85.1 to 86.5
Iron (Fe), % 70.4 to 78.9
0 to 0.030
Lead (Pb), % 0
0.4 to 0.6
Manganese (Mn), % 0 to 1.0
0 to 0.060
Nickel (Ni), % 3.0 to 5.0
0 to 0.030
Niobium (Nb), % 0.15 to 0.45
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
13.1 to 13.9
Zinc (Zn), % 0
0 to 0.12
Residuals, % 0
0 to 0.2