MakeItFrom.com
Menu (ESC)

S17400 Stainless Steel vs. C65400 Bronze

S17400 stainless steel belongs to the iron alloys classification, while C65400 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is S17400 stainless steel and the bottom bar is C65400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11 to 21
2.6 to 47
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
43
Shear Strength, MPa 570 to 830
350 to 530
Tensile Strength: Ultimate (UTS), MPa 910 to 1390
500 to 1060
Tensile Strength: Yield (Proof), MPa 580 to 1250
170 to 910

Thermal Properties

Latent Heat of Fusion, J/g 280
260
Maximum Temperature: Mechanical, °C 850
200
Melting Completion (Liquidus), °C 1440
1020
Melting Onset (Solidus), °C 1400
960
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 17
36
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 14
31
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 2.7
2.8
Embodied Energy, MJ/kg 39
45
Embodied Water, L/kg 130
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 160
10 to 480
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 4060
130 to 3640
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 32 to 49
16 to 34
Strength to Weight: Bending, points 27 to 35
16 to 27
Thermal Diffusivity, mm2/s 4.5
10
Thermal Shock Resistance, points 30 to 46
18 to 39

Alloy Composition

Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 15 to 17
0.010 to 0.12
Copper (Cu), % 3.0 to 5.0
93.8 to 96.1
Iron (Fe), % 70.4 to 78.9
0
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 3.0 to 5.0
0
Niobium (Nb), % 0.15 to 0.45
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
2.7 to 3.4
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
1.2 to 1.9
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.2