MakeItFrom.com
Menu (ESC)

S17400 Stainless Steel vs. C68400 Brass

S17400 stainless steel belongs to the iron alloys classification, while C68400 brass belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S17400 stainless steel and the bottom bar is C68400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 280 to 440
150
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11 to 21
18
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 75
41
Shear Strength, MPa 570 to 830
330
Tensile Strength: Ultimate (UTS), MPa 910 to 1390
540
Tensile Strength: Yield (Proof), MPa 580 to 1250
310

Thermal Properties

Latent Heat of Fusion, J/g 280
210
Maximum Temperature: Mechanical, °C 850
130
Melting Completion (Liquidus), °C 1440
840
Melting Onset (Solidus), °C 1400
820
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 17
66
Thermal Expansion, µm/m-K 11
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
87
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
99

Otherwise Unclassified Properties

Base Metal Price, % relative 14
23
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 39
47
Embodied Water, L/kg 130
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 160
81
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 4060
460
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 32 to 49
19
Strength to Weight: Bending, points 27 to 35
19
Thermal Diffusivity, mm2/s 4.5
21
Thermal Shock Resistance, points 30 to 46
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Boron (B), % 0
0.0010 to 0.030
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 3.0 to 5.0
59 to 64
Iron (Fe), % 70.4 to 78.9
0 to 1.0
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 1.0
0.2 to 1.5
Nickel (Ni), % 3.0 to 5.0
0 to 0.5
Niobium (Nb), % 0.15 to 0.45
0
Phosphorus (P), % 0 to 0.040
0.030 to 0.3
Silicon (Si), % 0 to 1.0
1.5 to 2.5
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.5
Zinc (Zn), % 0
28.6 to 39.3
Residuals, % 0
0 to 0.5