MakeItFrom.com
Menu (ESC)

S17400 Stainless Steel vs. C96900 Copper-nickel

S17400 stainless steel belongs to the iron alloys classification, while C96900 copper-nickel belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is S17400 stainless steel and the bottom bar is C96900 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 11 to 21
4.5
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
45
Tensile Strength: Ultimate (UTS), MPa 910 to 1390
850
Tensile Strength: Yield (Proof), MPa 580 to 1250
830

Thermal Properties

Latent Heat of Fusion, J/g 280
210
Maximum Temperature: Mechanical, °C 850
210
Melting Completion (Liquidus), °C 1440
1060
Melting Onset (Solidus), °C 1400
960
Specific Heat Capacity, J/kg-K 480
380
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 14
39
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 2.7
4.6
Embodied Energy, MJ/kg 39
72
Embodied Water, L/kg 130
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 160
38
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 4060
2820
Stiffness to Weight: Axial, points 14
7.7
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 32 to 49
27
Strength to Weight: Bending, points 27 to 35
23
Thermal Shock Resistance, points 30 to 46
30

Alloy Composition

Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 3.0 to 5.0
73.6 to 78
Iron (Fe), % 70.4 to 78.9
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0 to 1.0
0.050 to 0.3
Nickel (Ni), % 3.0 to 5.0
14.5 to 15.5
Niobium (Nb), % 0.15 to 0.45
0 to 0.1
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.3
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
7.5 to 8.5
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5