MakeItFrom.com
Menu (ESC)

S17400 Stainless Steel vs. S44725 Stainless Steel

Both S17400 stainless steel and S44725 stainless steel are iron alloys. They have 87% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S17400 stainless steel and the bottom bar is S44725 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 280 to 440
180
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 11 to 21
22
Fatigue Strength, MPa 380 to 670
210
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 75
81
Shear Strength, MPa 570 to 830
320
Tensile Strength: Ultimate (UTS), MPa 910 to 1390
500
Tensile Strength: Yield (Proof), MPa 580 to 1250
310

Thermal Properties

Latent Heat of Fusion, J/g 280
290
Maximum Temperature: Corrosion, °C 450
500
Maximum Temperature: Mechanical, °C 850
1100
Melting Completion (Liquidus), °C 1440
1450
Melting Onset (Solidus), °C 1400
1410
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 17
17
Thermal Expansion, µm/m-K 11
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 14
15
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.7
3.1
Embodied Energy, MJ/kg 39
44
Embodied Water, L/kg 130
170

Common Calculations

PREN (Pitting Resistance) 16
33
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 160
99
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 4060
240
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 32 to 49
18
Strength to Weight: Bending, points 27 to 35
18
Thermal Diffusivity, mm2/s 4.5
4.6
Thermal Shock Resistance, points 30 to 46
16

Alloy Composition

Carbon (C), % 0 to 0.070
0 to 0.015
Chromium (Cr), % 15 to 17
25 to 28.5
Copper (Cu), % 3.0 to 5.0
0
Iron (Fe), % 70.4 to 78.9
67.6 to 73.5
Manganese (Mn), % 0 to 1.0
0 to 0.4
Molybdenum (Mo), % 0
1.5 to 2.5
Nickel (Ni), % 3.0 to 5.0
0 to 0.3
Niobium (Nb), % 0.15 to 0.45
0 to 0.26
Nitrogen (N), % 0
0 to 0.018
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 0.040
Sulfur (S), % 0 to 0.030
0 to 0.020
Titanium (Ti), % 0
0 to 0.26