MakeItFrom.com
Menu (ESC)

S17600 Stainless Steel vs. C66200 Brass

S17600 stainless steel belongs to the iron alloys classification, while C66200 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S17600 stainless steel and the bottom bar is C66200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 8.6 to 11
8.0 to 15
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
42
Shear Strength, MPa 560 to 880
270 to 300
Tensile Strength: Ultimate (UTS), MPa 940 to 1490
450 to 520
Tensile Strength: Yield (Proof), MPa 580 to 1310
410 to 480

Thermal Properties

Latent Heat of Fusion, J/g 290
200
Maximum Temperature: Mechanical, °C 890
180
Melting Completion (Liquidus), °C 1430
1070
Melting Onset (Solidus), °C 1390
1030
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 15
150
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
35
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
36

Otherwise Unclassified Properties

Base Metal Price, % relative 13
29
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 2.9
2.7
Embodied Energy, MJ/kg 42
43
Embodied Water, L/kg 130
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70 to 150
40 to 66
Resilience: Unit (Modulus of Resilience), kJ/m3 850 to 4390
760 to 1030
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 34 to 54
14 to 17
Strength to Weight: Bending, points 28 to 37
15 to 16
Thermal Diffusivity, mm2/s 4.1
45
Thermal Shock Resistance, points 31 to 50
16 to 18

Alloy Composition

Aluminum (Al), % 0 to 0.4
0
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 16 to 17.5
0
Copper (Cu), % 0
86.6 to 91
Iron (Fe), % 71.3 to 77.6
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 6.0 to 7.5
0.3 to 1.0
Phosphorus (P), % 0 to 0.040
0.050 to 0.2
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.2 to 0.7
Titanium (Ti), % 0.4 to 1.2
0
Zinc (Zn), % 0
6.5 to 12.9
Residuals, % 0
0 to 0.5