MakeItFrom.com
Menu (ESC)

S17600 Stainless Steel vs. C96900 Copper-nickel

S17600 stainless steel belongs to the iron alloys classification, while C96900 copper-nickel belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is S17600 stainless steel and the bottom bar is C96900 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 8.6 to 11
4.5
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
45
Tensile Strength: Ultimate (UTS), MPa 940 to 1490
850
Tensile Strength: Yield (Proof), MPa 580 to 1310
830

Thermal Properties

Latent Heat of Fusion, J/g 290
210
Maximum Temperature: Mechanical, °C 890
210
Melting Completion (Liquidus), °C 1430
1060
Melting Onset (Solidus), °C 1390
960
Specific Heat Capacity, J/kg-K 480
380
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 13
39
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 2.9
4.6
Embodied Energy, MJ/kg 42
72
Embodied Water, L/kg 130
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70 to 150
38
Resilience: Unit (Modulus of Resilience), kJ/m3 850 to 4390
2820
Stiffness to Weight: Axial, points 14
7.7
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 34 to 54
27
Strength to Weight: Bending, points 28 to 37
23
Thermal Shock Resistance, points 31 to 50
30

Alloy Composition

Aluminum (Al), % 0 to 0.4
0
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 16 to 17.5
0
Copper (Cu), % 0
73.6 to 78
Iron (Fe), % 71.3 to 77.6
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0 to 1.0
0.050 to 0.3
Nickel (Ni), % 6.0 to 7.5
14.5 to 15.5
Niobium (Nb), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.3
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
7.5 to 8.5
Titanium (Ti), % 0.4 to 1.2
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5