MakeItFrom.com
Menu (ESC)

S17600 Stainless Steel vs. C97600 Dairy Metal

S17600 stainless steel belongs to the iron alloys classification, while C97600 dairy metal belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is S17600 stainless steel and the bottom bar is C97600 dairy metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 8.6 to 11
11
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
46
Tensile Strength: Ultimate (UTS), MPa 940 to 1490
310
Tensile Strength: Yield (Proof), MPa 580 to 1310
140

Thermal Properties

Latent Heat of Fusion, J/g 290
210
Maximum Temperature: Mechanical, °C 890
210
Melting Completion (Liquidus), °C 1430
1140
Melting Onset (Solidus), °C 1390
1110
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 15
22
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
5.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
5.1

Otherwise Unclassified Properties

Base Metal Price, % relative 13
37
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 2.9
4.6
Embodied Energy, MJ/kg 42
69
Embodied Water, L/kg 130
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70 to 150
29
Resilience: Unit (Modulus of Resilience), kJ/m3 850 to 4390
85
Stiffness to Weight: Axial, points 14
7.7
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 34 to 54
9.8
Strength to Weight: Bending, points 28 to 37
12
Thermal Diffusivity, mm2/s 4.1
6.5
Thermal Shock Resistance, points 31 to 50
11

Alloy Composition

Aluminum (Al), % 0 to 0.4
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 16 to 17.5
0
Copper (Cu), % 0
63 to 67
Iron (Fe), % 71.3 to 77.6
0 to 1.5
Lead (Pb), % 0
3.0 to 5.0
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 6.0 to 7.5
19 to 21.5
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0 to 1.0
0 to 0.15
Sulfur (S), % 0 to 0.030
0 to 0.080
Tin (Sn), % 0
3.5 to 4.0
Titanium (Ti), % 0.4 to 1.2
0
Zinc (Zn), % 0
3.0 to 9.0
Residuals, % 0
0 to 0.3