MakeItFrom.com
Menu (ESC)

S17700 Stainless Steel vs. AWS ER120S-1

Both S17700 stainless steel and AWS ER120S-1 are iron alloys. They have 77% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is S17700 stainless steel and the bottom bar is AWS ER120S-1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 1.0 to 23
17
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Tensile Strength: Ultimate (UTS), MPa 1180 to 1650
930
Tensile Strength: Yield (Proof), MPa 430 to 1210
830

Thermal Properties

Latent Heat of Fusion, J/g 290
260
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
46
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 13
4.2
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.9
Embodied Energy, MJ/kg 40
25
Embodied Water, L/kg 150
56

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 210
150
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 3750
1850
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 42 to 59
33
Strength to Weight: Bending, points 32 to 40
27
Thermal Diffusivity, mm2/s 4.1
13
Thermal Shock Resistance, points 39 to 54
27

Alloy Composition

Aluminum (Al), % 0.75 to 1.5
0 to 0.1
Carbon (C), % 0 to 0.090
0 to 0.1
Chromium (Cr), % 16 to 18
0 to 0.6
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 70.5 to 76.8
92.4 to 96.1
Manganese (Mn), % 0 to 1.0
1.4 to 1.8
Molybdenum (Mo), % 0
0.3 to 0.65
Nickel (Ni), % 6.5 to 7.8
2.0 to 2.8
Phosphorus (P), % 0 to 0.040
0 to 0.010
Silicon (Si), % 0 to 1.0
0.25 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0
0 to 0.030
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.5