MakeItFrom.com
Menu (ESC)

S17700 Stainless Steel vs. EN 1.4901 Stainless Steel

Both S17700 stainless steel and EN 1.4901 stainless steel are iron alloys. They have 84% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S17700 stainless steel and the bottom bar is EN 1.4901 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 1.0 to 23
19
Fatigue Strength, MPa 290 to 560
310
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Shear Strength, MPa 740 to 940
460
Tensile Strength: Ultimate (UTS), MPa 1180 to 1650
740
Tensile Strength: Yield (Proof), MPa 430 to 1210
490

Thermal Properties

Latent Heat of Fusion, J/g 290
260
Maximum Temperature: Corrosion, °C 410
380
Maximum Temperature: Mechanical, °C 890
650
Melting Completion (Liquidus), °C 1440
1490
Melting Onset (Solidus), °C 1400
1450
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
26
Thermal Expansion, µm/m-K 11
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
8.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 13
11
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.8
2.8
Embodied Energy, MJ/kg 40
40
Embodied Water, L/kg 150
89

Common Calculations

PREN (Pitting Resistance) 17
14
Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 210
120
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 3750
620
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 42 to 59
26
Strength to Weight: Bending, points 32 to 40
23
Thermal Diffusivity, mm2/s 4.1
6.9
Thermal Shock Resistance, points 39 to 54
23

Alloy Composition

Aluminum (Al), % 0.75 to 1.5
0 to 0.020
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0 to 0.090
0.070 to 0.13
Chromium (Cr), % 16 to 18
8.5 to 9.5
Iron (Fe), % 70.5 to 76.8
85.8 to 89.1
Manganese (Mn), % 0 to 1.0
0.3 to 0.6
Molybdenum (Mo), % 0
0.3 to 0.6
Nickel (Ni), % 6.5 to 7.8
0 to 0.4
Niobium (Nb), % 0
0.040 to 0.090
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
1.5 to 2.0
Vanadium (V), % 0
0.15 to 0.25
Zirconium (Zr), % 0
0 to 0.010