MakeItFrom.com
Menu (ESC)

S17700 Stainless Steel vs. EN 1.4911 Stainless Steel

Both S17700 stainless steel and EN 1.4911 stainless steel are iron alloys. They have 86% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S17700 stainless steel and the bottom bar is EN 1.4911 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 1.0 to 23
11
Fatigue Strength, MPa 290 to 560
530
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Shear Strength, MPa 740 to 940
640
Tensile Strength: Ultimate (UTS), MPa 1180 to 1650
1070
Tensile Strength: Yield (Proof), MPa 430 to 1210
970

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Corrosion, °C 410
430
Maximum Temperature: Mechanical, °C 890
700
Melting Completion (Liquidus), °C 1440
1450
Melting Onset (Solidus), °C 1400
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
20
Thermal Expansion, µm/m-K 11
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 13
20
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.8
3.4
Embodied Energy, MJ/kg 40
49
Embodied Water, L/kg 150
130

Common Calculations

PREN (Pitting Resistance) 17
14
Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 210
120
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 3750
2410
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 42 to 59
38
Strength to Weight: Bending, points 32 to 40
30
Thermal Diffusivity, mm2/s 4.1
5.4
Thermal Shock Resistance, points 39 to 54
37

Alloy Composition

Aluminum (Al), % 0.75 to 1.5
0
Boron (B), % 0
0.0050 to 0.015
Carbon (C), % 0 to 0.090
0.050 to 0.12
Chromium (Cr), % 16 to 18
9.8 to 11.2
Cobalt (Co), % 0
5.0 to 7.0
Iron (Fe), % 70.5 to 76.8
75.7 to 83.8
Manganese (Mn), % 0 to 1.0
0.3 to 1.3
Molybdenum (Mo), % 0
0.5 to 1.0
Nickel (Ni), % 6.5 to 7.8
0.2 to 1.2
Niobium (Nb), % 0
0.2 to 0.5
Nitrogen (N), % 0
0 to 0.035
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0.1 to 0.8
Sulfur (S), % 0 to 0.030
0 to 0.015
Tungsten (W), % 0
0 to 0.7
Vanadium (V), % 0
0.1 to 0.4