MakeItFrom.com
Menu (ESC)

S17700 Stainless Steel vs. EN 1.6554 Steel

Both S17700 stainless steel and EN 1.6554 steel are iron alloys. They have 77% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S17700 stainless steel and the bottom bar is EN 1.6554 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180 to 430
230 to 280
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 1.0 to 23
17 to 21
Fatigue Strength, MPa 290 to 560
380 to 520
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Tensile Strength: Ultimate (UTS), MPa 1180 to 1650
780 to 930
Tensile Strength: Yield (Proof), MPa 430 to 1210
550 to 790

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 890
420
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
40
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 13
3.4
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.8
1.7
Embodied Energy, MJ/kg 40
22
Embodied Water, L/kg 150
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 210
140 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 3750
810 to 1650
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 42 to 59
27 to 33
Strength to Weight: Bending, points 32 to 40
24 to 27
Thermal Diffusivity, mm2/s 4.1
11
Thermal Shock Resistance, points 39 to 54
23 to 27

Alloy Composition

Aluminum (Al), % 0.75 to 1.5
0
Carbon (C), % 0 to 0.090
0.23 to 0.28
Chromium (Cr), % 16 to 18
0.7 to 0.9
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 70.5 to 76.8
94.6 to 97.3
Manganese (Mn), % 0 to 1.0
0.6 to 0.9
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 6.5 to 7.8
1.0 to 2.0
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.025
Vanadium (V), % 0
0 to 0.030

Comparable Variants