MakeItFrom.com
Menu (ESC)

S17700 Stainless Steel vs. C16500 Copper

S17700 stainless steel belongs to the iron alloys classification, while C16500 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S17700 stainless steel and the bottom bar is C16500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 1.0 to 23
1.5 to 53
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
43
Shear Strength, MPa 740 to 940
200 to 310
Tensile Strength: Ultimate (UTS), MPa 1180 to 1650
280 to 530
Tensile Strength: Yield (Proof), MPa 430 to 1210
97 to 520

Thermal Properties

Latent Heat of Fusion, J/g 290
210
Maximum Temperature: Mechanical, °C 890
340
Melting Completion (Liquidus), °C 1440
1070
Melting Onset (Solidus), °C 1400
1010
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 15
250
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
60
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
61

Otherwise Unclassified Properties

Base Metal Price, % relative 13
31
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 2.8
2.6
Embodied Energy, MJ/kg 40
42
Embodied Water, L/kg 150
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 210
7.8 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 3750
41 to 1160
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 42 to 59
8.6 to 17
Strength to Weight: Bending, points 32 to 40
11 to 16
Thermal Diffusivity, mm2/s 4.1
74
Thermal Shock Resistance, points 39 to 54
9.8 to 19

Alloy Composition

Aluminum (Al), % 0.75 to 1.5
0
Cadmium (Cd), % 0
0.6 to 1.0
Carbon (C), % 0 to 0.090
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
97.8 to 98.9
Iron (Fe), % 70.5 to 76.8
0 to 0.020
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 6.5 to 7.8
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.5 to 0.7
Residuals, % 0
0 to 0.5