MakeItFrom.com
Menu (ESC)

S17700 Stainless Steel vs. C36500 Muntz Metal

S17700 stainless steel belongs to the iron alloys classification, while C36500 Muntz Metal belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S17700 stainless steel and the bottom bar is C36500 Muntz Metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 1.0 to 23
40
Poisson's Ratio 0.28
0.3
Shear Modulus, GPa 76
39
Shear Strength, MPa 740 to 940
270
Tensile Strength: Ultimate (UTS), MPa 1180 to 1650
400
Tensile Strength: Yield (Proof), MPa 430 to 1210
160

Thermal Properties

Latent Heat of Fusion, J/g 290
170
Maximum Temperature: Mechanical, °C 890
120
Melting Completion (Liquidus), °C 1440
900
Melting Onset (Solidus), °C 1400
890
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 15
120
Thermal Expansion, µm/m-K 11
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
28
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
32

Otherwise Unclassified Properties

Base Metal Price, % relative 13
23
Density, g/cm3 7.7
8.0
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 40
46
Embodied Water, L/kg 150
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 210
130
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 3750
120
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 42 to 59
14
Strength to Weight: Bending, points 32 to 40
15
Thermal Diffusivity, mm2/s 4.1
40
Thermal Shock Resistance, points 39 to 54
13

Alloy Composition

Aluminum (Al), % 0.75 to 1.5
0
Carbon (C), % 0 to 0.090
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
58 to 61
Iron (Fe), % 70.5 to 76.8
0 to 0.15
Lead (Pb), % 0
0.25 to 0.7
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 6.5 to 7.8
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.25
Zinc (Zn), % 0
37.5 to 41.8
Residuals, % 0
0 to 0.4