MakeItFrom.com
Menu (ESC)

S17700 Stainless Steel vs. C90200 Bronze

S17700 stainless steel belongs to the iron alloys classification, while C90200 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S17700 stainless steel and the bottom bar is C90200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180 to 430
70
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 1.0 to 23
30
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
41
Tensile Strength: Ultimate (UTS), MPa 1180 to 1650
260
Tensile Strength: Yield (Proof), MPa 430 to 1210
110

Thermal Properties

Latent Heat of Fusion, J/g 290
200
Maximum Temperature: Mechanical, °C 890
180
Melting Completion (Liquidus), °C 1440
1050
Melting Onset (Solidus), °C 1400
880
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 15
62
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
13
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
13

Otherwise Unclassified Properties

Base Metal Price, % relative 13
34
Density, g/cm3 7.7
8.8
Embodied Carbon, kg CO2/kg material 2.8
3.3
Embodied Energy, MJ/kg 40
53
Embodied Water, L/kg 150
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 210
63
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 3750
55
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 42 to 59
8.3
Strength to Weight: Bending, points 32 to 40
10
Thermal Diffusivity, mm2/s 4.1
19
Thermal Shock Resistance, points 39 to 54
9.5

Alloy Composition

Aluminum (Al), % 0.75 to 1.5
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.090
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
91 to 94
Iron (Fe), % 70.5 to 76.8
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 6.5 to 7.8
0 to 0.5
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0
6.0 to 8.0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.6