MakeItFrom.com
Menu (ESC)

S17700 Stainless Steel vs. C92500 Bronze

S17700 stainless steel belongs to the iron alloys classification, while C92500 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S17700 stainless steel and the bottom bar is C92500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 1.0 to 23
11
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 1180 to 1650
310
Tensile Strength: Yield (Proof), MPa 430 to 1210
190

Thermal Properties

Latent Heat of Fusion, J/g 290
190
Maximum Temperature: Mechanical, °C 890
170
Melting Completion (Liquidus), °C 1440
980
Melting Onset (Solidus), °C 1400
870
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 15
63
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
12
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
12

Otherwise Unclassified Properties

Base Metal Price, % relative 13
35
Density, g/cm3 7.7
8.7
Embodied Carbon, kg CO2/kg material 2.8
3.7
Embodied Energy, MJ/kg 40
61
Embodied Water, L/kg 150
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 210
30
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 3750
170
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 42 to 59
9.8
Strength to Weight: Bending, points 32 to 40
12
Thermal Diffusivity, mm2/s 4.1
20
Thermal Shock Resistance, points 39 to 54
12

Alloy Composition

Aluminum (Al), % 0.75 to 1.5
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.090
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
85 to 88
Iron (Fe), % 70.5 to 76.8
0 to 0.3
Lead (Pb), % 0
1.0 to 1.5
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 6.5 to 7.8
0.8 to 1.5
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0
10 to 12
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.7