S17700 Stainless Steel vs. S44635 Stainless Steel
Both S17700 stainless steel and S44635 stainless steel are iron alloys. They have 87% of their average alloy composition in common.
For each property being compared, the top bar is S17700 stainless steel and the bottom bar is S44635 stainless steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 180 to 430 | |
240 |
Elastic (Young's, Tensile) Modulus, GPa | 200 | |
210 |
Elongation at Break, % | 1.0 to 23 | |
23 |
Fatigue Strength, MPa | 290 to 560 | |
390 |
Poisson's Ratio | 0.28 | |
0.27 |
Rockwell C Hardness | 41 to 46 | |
24 |
Shear Modulus, GPa | 76 | |
81 |
Shear Strength, MPa | 740 to 940 | |
450 |
Tensile Strength: Ultimate (UTS), MPa | 1180 to 1650 | |
710 |
Tensile Strength: Yield (Proof), MPa | 430 to 1210 | |
580 |
Thermal Properties
Latent Heat of Fusion, J/g | 290 | |
300 |
Maximum Temperature: Corrosion, °C | 410 | |
610 |
Maximum Temperature: Mechanical, °C | 890 | |
1100 |
Melting Completion (Liquidus), °C | 1440 | |
1460 |
Melting Onset (Solidus), °C | 1400 | |
1420 |
Specific Heat Capacity, J/kg-K | 480 | |
470 |
Thermal Conductivity, W/m-K | 15 | |
16 |
Thermal Expansion, µm/m-K | 11 | |
11 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 2.3 | |
2.2 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 2.7 | |
2.5 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 13 | |
22 |
Density, g/cm3 | 7.7 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 2.8 | |
4.4 |
Embodied Energy, MJ/kg | 40 | |
62 |
Embodied Water, L/kg | 150 | |
170 |
Common Calculations
PREN (Pitting Resistance) | 17 | |
39 |
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 15 to 210 | |
150 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 460 to 3750 | |
810 |
Stiffness to Weight: Axial, points | 14 | |
15 |
Stiffness to Weight: Bending, points | 25 | |
25 |
Strength to Weight: Axial, points | 42 to 59 | |
25 |
Strength to Weight: Bending, points | 32 to 40 | |
23 |
Thermal Diffusivity, mm2/s | 4.1 | |
4.4 |
Thermal Shock Resistance, points | 39 to 54 | |
23 |
Alloy Composition
Aluminum (Al), % | 0.75 to 1.5 | |
0 |
Carbon (C), % | 0 to 0.090 | |
0 to 0.025 |
Chromium (Cr), % | 16 to 18 | |
24.5 to 26 |
Iron (Fe), % | 70.5 to 76.8 | |
61.5 to 68.5 |
Manganese (Mn), % | 0 to 1.0 | |
0 to 1.0 |
Molybdenum (Mo), % | 0 | |
3.5 to 4.5 |
Nickel (Ni), % | 6.5 to 7.8 | |
3.5 to 4.5 |
Niobium (Nb), % | 0 | |
0.2 to 0.8 |
Nitrogen (N), % | 0 | |
0 to 0.035 |
Phosphorus (P), % | 0 to 0.040 | |
0 to 0.040 |
Silicon (Si), % | 0 to 1.0 | |
0 to 0.75 |
Sulfur (S), % | 0 to 0.030 | |
0 to 0.030 |
Titanium (Ti), % | 0 | |
0.2 to 0.8 |