MakeItFrom.com
Menu (ESC)

S20161 Stainless Steel vs. 2024 Aluminum

S20161 stainless steel belongs to the iron alloys classification, while 2024 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S20161 stainless steel and the bottom bar is 2024 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 46
4.0 to 16
Fatigue Strength, MPa 360
90 to 180
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
27
Shear Strength, MPa 690
130 to 320
Tensile Strength: Ultimate (UTS), MPa 980
200 to 540
Tensile Strength: Yield (Proof), MPa 390
100 to 490

Thermal Properties

Latent Heat of Fusion, J/g 330
390
Maximum Temperature: Mechanical, °C 870
200
Melting Completion (Liquidus), °C 1380
640
Melting Onset (Solidus), °C 1330
500
Specific Heat Capacity, J/kg-K 490
880
Thermal Conductivity, W/m-K 15
120
Thermal Expansion, µm/m-K 16
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
30
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
90

Otherwise Unclassified Properties

Base Metal Price, % relative 12
11
Density, g/cm3 7.5
3.0
Embodied Carbon, kg CO2/kg material 2.7
8.3
Embodied Energy, MJ/kg 39
150
Embodied Water, L/kg 130
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 360
20 to 68
Resilience: Unit (Modulus of Resilience), kJ/m3 390
70 to 1680
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 26
46
Strength to Weight: Axial, points 36
18 to 50
Strength to Weight: Bending, points 29
25 to 49
Thermal Diffusivity, mm2/s 4.0
46
Thermal Shock Resistance, points 22
8.6 to 24

Alloy Composition

Aluminum (Al), % 0
90.7 to 94.7
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 15 to 18
0 to 0.1
Copper (Cu), % 0
3.8 to 4.9
Iron (Fe), % 65.6 to 73.9
0 to 0.5
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 4.0 to 6.0
0.3 to 0.9
Nickel (Ni), % 4.0 to 6.0
0
Nitrogen (N), % 0.080 to 0.2
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 3.0 to 4.0
0 to 0.5
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15