MakeItFrom.com
Menu (ESC)

S20161 Stainless Steel vs. 2095 Aluminum

S20161 stainless steel belongs to the iron alloys classification, while 2095 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S20161 stainless steel and the bottom bar is 2095 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 46
8.5
Fatigue Strength, MPa 360
200
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 690
410
Tensile Strength: Ultimate (UTS), MPa 980
700
Tensile Strength: Yield (Proof), MPa 390
610

Thermal Properties

Latent Heat of Fusion, J/g 330
390
Maximum Temperature: Mechanical, °C 870
210
Melting Completion (Liquidus), °C 1380
660
Melting Onset (Solidus), °C 1330
540
Specific Heat Capacity, J/kg-K 490
910
Thermal Conductivity, W/m-K 15
130
Thermal Expansion, µm/m-K 16
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
35
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
110

Otherwise Unclassified Properties

Base Metal Price, % relative 12
31
Density, g/cm3 7.5
3.0
Embodied Carbon, kg CO2/kg material 2.7
8.6
Embodied Energy, MJ/kg 39
160
Embodied Water, L/kg 130
1470

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 360
57
Resilience: Unit (Modulus of Resilience), kJ/m3 390
2640
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 26
46
Strength to Weight: Axial, points 36
65
Strength to Weight: Bending, points 29
59
Thermal Diffusivity, mm2/s 4.0
49
Thermal Shock Resistance, points 22
31

Alloy Composition

Aluminum (Al), % 0
91.3 to 94.9
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 15 to 18
0
Copper (Cu), % 0
3.9 to 4.6
Iron (Fe), % 65.6 to 73.9
0 to 0.15
Lithium (Li), % 0
0.7 to 1.5
Magnesium (Mg), % 0
0.25 to 0.8
Manganese (Mn), % 4.0 to 6.0
0 to 0.25
Nickel (Ni), % 4.0 to 6.0
0
Nitrogen (N), % 0.080 to 0.2
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 3.0 to 4.0
0 to 0.12
Silver (Ag), % 0
0.25 to 0.6
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0.040 to 0.18
Residuals, % 0
0 to 0.15