MakeItFrom.com
Menu (ESC)

S20161 Stainless Steel vs. Grade 30 Titanium

S20161 stainless steel belongs to the iron alloys classification, while grade 30 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S20161 stainless steel and the bottom bar is grade 30 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 46
23
Fatigue Strength, MPa 360
250
Poisson's Ratio 0.28
0.32
Reduction in Area, % 45
34
Shear Modulus, GPa 76
41
Shear Strength, MPa 690
240
Tensile Strength: Ultimate (UTS), MPa 980
390
Tensile Strength: Yield (Proof), MPa 390
350

Thermal Properties

Latent Heat of Fusion, J/g 330
420
Maximum Temperature: Mechanical, °C 870
320
Melting Completion (Liquidus), °C 1380
1660
Melting Onset (Solidus), °C 1330
1610
Specific Heat Capacity, J/kg-K 490
540
Thermal Conductivity, W/m-K 15
21
Thermal Expansion, µm/m-K 16
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
6.9

Otherwise Unclassified Properties

Density, g/cm3 7.5
4.5
Embodied Carbon, kg CO2/kg material 2.7
36
Embodied Energy, MJ/kg 39
600
Embodied Water, L/kg 130
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 360
86
Resilience: Unit (Modulus of Resilience), kJ/m3 390
590
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 26
35
Strength to Weight: Axial, points 36
24
Strength to Weight: Bending, points 29
26
Thermal Diffusivity, mm2/s 4.0
8.6
Thermal Shock Resistance, points 22
30

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.080
Chromium (Cr), % 15 to 18
0
Cobalt (Co), % 0
0.2 to 0.8
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 65.6 to 73.9
0 to 0.3
Manganese (Mn), % 4.0 to 6.0
0
Nickel (Ni), % 4.0 to 6.0
0
Nitrogen (N), % 0.080 to 0.2
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 3.0 to 4.0
0
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
98 to 99.76
Residuals, % 0
0 to 0.4