MakeItFrom.com
Menu (ESC)

S20431 Stainless Steel vs. 390.0 Aluminum

S20431 stainless steel belongs to the iron alloys classification, while 390.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S20431 stainless steel and the bottom bar is 390.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
120
Elastic (Young's, Tensile) Modulus, GPa 200
75
Elongation at Break, % 46
1.0
Fatigue Strength, MPa 320
76 to 110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
28
Tensile Strength: Ultimate (UTS), MPa 710
280 to 300
Tensile Strength: Yield (Proof), MPa 350
240 to 270

Thermal Properties

Latent Heat of Fusion, J/g 280
640
Maximum Temperature: Mechanical, °C 890
170
Melting Completion (Liquidus), °C 1400
650
Melting Onset (Solidus), °C 1360
560
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 15
130
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
24 to 25
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
79 to 83

Otherwise Unclassified Properties

Base Metal Price, % relative 12
11
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 2.5
7.3
Embodied Energy, MJ/kg 36
130
Embodied Water, L/kg 140
950

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
2.7 to 2.9
Resilience: Unit (Modulus of Resilience), kJ/m3 310
380 to 470
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
52
Strength to Weight: Axial, points 25
28 to 30
Strength to Weight: Bending, points 23
35 to 36
Thermal Diffusivity, mm2/s 4.0
56
Thermal Shock Resistance, points 15
14 to 15

Alloy Composition

Aluminum (Al), % 0
74.5 to 79.6
Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 17 to 18
0
Copper (Cu), % 1.5 to 3.5
4.0 to 5.0
Iron (Fe), % 66.1 to 74.4
0 to 1.3
Magnesium (Mg), % 0
0.45 to 0.65
Manganese (Mn), % 5.0 to 7.0
0 to 0.1
Nickel (Ni), % 2.0 to 4.0
0
Nitrogen (N), % 0.1 to 0.25
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
16 to 18
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.2