MakeItFrom.com
Menu (ESC)

S20431 Stainless Steel vs. EN 1.0546 Steel

Both S20431 stainless steel and EN 1.0546 steel are iron alloys. They have 73% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S20431 stainless steel and the bottom bar is EN 1.0546 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
160
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 46
24
Fatigue Strength, MPa 320
260
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Shear Strength, MPa 500
350
Tensile Strength: Ultimate (UTS), MPa 710
550
Tensile Strength: Yield (Proof), MPa 350
360

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 890
400
Melting Completion (Liquidus), °C 1400
1460
Melting Onset (Solidus), °C 1360
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
45
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 12
2.5
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.5
1.7
Embodied Energy, MJ/kg 36
23
Embodied Water, L/kg 140
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
110
Resilience: Unit (Modulus of Resilience), kJ/m3 310
350
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 25
19
Strength to Weight: Bending, points 23
19
Thermal Diffusivity, mm2/s 4.0
12
Thermal Shock Resistance, points 15
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.015
Carbon (C), % 0 to 0.12
0 to 0.2
Chromium (Cr), % 17 to 18
0 to 0.35
Copper (Cu), % 1.5 to 3.5
0 to 0.6
Iron (Fe), % 66.1 to 74.4
95.5 to 99.15
Manganese (Mn), % 5.0 to 7.0
0.85 to 1.8
Molybdenum (Mo), % 0
0 to 0.13
Nickel (Ni), % 2.0 to 4.0
0 to 0.55
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0.1 to 0.25
0 to 0.017
Phosphorus (P), % 0 to 0.045
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.55
Sulfur (S), % 0 to 0.030
0 to 0.025
Titanium (Ti), % 0
0 to 0.060
Vanadium (V), % 0
0 to 0.14