MakeItFrom.com
Menu (ESC)

S20431 Stainless Steel vs. S31100 Stainless Steel

Both S20431 stainless steel and S31100 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 88% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S20431 stainless steel and the bottom bar is S31100 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
270
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 46
4.5
Fatigue Strength, MPa 320
330
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 76
79
Shear Strength, MPa 500
580
Tensile Strength: Ultimate (UTS), MPa 710
1000
Tensile Strength: Yield (Proof), MPa 350
710

Thermal Properties

Latent Heat of Fusion, J/g 280
300
Maximum Temperature: Corrosion, °C 410
470
Maximum Temperature: Mechanical, °C 890
1100
Melting Completion (Liquidus), °C 1400
1420
Melting Onset (Solidus), °C 1360
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
16
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 12
16
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.5
3.1
Embodied Energy, MJ/kg 36
44
Embodied Water, L/kg 140
170

Common Calculations

PREN (Pitting Resistance) 20
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
40
Resilience: Unit (Modulus of Resilience), kJ/m3 310
1240
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 25
36
Strength to Weight: Bending, points 23
29
Thermal Diffusivity, mm2/s 4.0
4.2
Thermal Shock Resistance, points 15
28

Alloy Composition

Carbon (C), % 0 to 0.12
0 to 0.060
Chromium (Cr), % 17 to 18
25 to 27
Copper (Cu), % 1.5 to 3.5
0
Iron (Fe), % 66.1 to 74.4
63.6 to 69
Manganese (Mn), % 5.0 to 7.0
0 to 1.0
Nickel (Ni), % 2.0 to 4.0
6.0 to 7.0
Nitrogen (N), % 0.1 to 0.25
0
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
0 to 0.25