MakeItFrom.com
Menu (ESC)

S20432 Stainless Steel vs. S32050 Stainless Steel

Both S20432 stainless steel and S32050 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 72% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S20432 stainless steel and the bottom bar is S32050 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
220
Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 45
46
Fatigue Strength, MPa 210
340
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
81
Shear Strength, MPa 400
540
Tensile Strength: Ultimate (UTS), MPa 580
770
Tensile Strength: Yield (Proof), MPa 230
370

Thermal Properties

Latent Heat of Fusion, J/g 280
310
Maximum Temperature: Corrosion, °C 410
440
Maximum Temperature: Mechanical, °C 900
1100
Melting Completion (Liquidus), °C 1410
1460
Melting Onset (Solidus), °C 1370
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
12
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 13
31
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 2.7
6.0
Embodied Energy, MJ/kg 38
81
Embodied Water, L/kg 140
210

Common Calculations

PREN (Pitting Resistance) 20
48
Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
290
Resilience: Unit (Modulus of Resilience), kJ/m3 140
330
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
27
Strength to Weight: Bending, points 20
23
Thermal Diffusivity, mm2/s 4.0
3.3
Thermal Shock Resistance, points 13
17

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 17 to 18
22 to 24
Copper (Cu), % 2.0 to 3.0
0 to 0.4
Iron (Fe), % 66.7 to 74
43.1 to 51.8
Manganese (Mn), % 3.0 to 5.0
0 to 1.5
Molybdenum (Mo), % 0
6.0 to 6.6
Nickel (Ni), % 4.0 to 6.0
20 to 23
Nitrogen (N), % 0.050 to 0.2
0.21 to 0.32
Phosphorus (P), % 0 to 0.045
0 to 0.035
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.020