MakeItFrom.com
Menu (ESC)

S20433 Stainless Steel vs. 5154 Aluminum

S20433 stainless steel belongs to the iron alloys classification, while 5154 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S20433 stainless steel and the bottom bar is 5154 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 46
3.4 to 20
Fatigue Strength, MPa 250
100 to 160
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 440
140 to 210
Tensile Strength: Ultimate (UTS), MPa 630
240 to 360
Tensile Strength: Yield (Proof), MPa 270
94 to 270

Thermal Properties

Latent Heat of Fusion, J/g 280
400
Maximum Temperature: Mechanical, °C 900
190
Melting Completion (Liquidus), °C 1400
640
Melting Onset (Solidus), °C 1360
590
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 15
130
Thermal Expansion, µm/m-K 17
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
32
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
110

Otherwise Unclassified Properties

Base Metal Price, % relative 13
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 2.7
8.8
Embodied Energy, MJ/kg 39
150
Embodied Water, L/kg 150
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
11 to 39
Resilience: Unit (Modulus of Resilience), kJ/m3 180
64 to 540
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 23
25 to 37
Strength to Weight: Bending, points 21
32 to 42
Thermal Diffusivity, mm2/s 4.0
52
Thermal Shock Resistance, points 14
10 to 16

Alloy Composition

Aluminum (Al), % 0
94.4 to 96.8
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17 to 18
0.15 to 0.35
Copper (Cu), % 1.5 to 3.5
0 to 0.1
Iron (Fe), % 64.1 to 72.4
0 to 0.4
Magnesium (Mg), % 0
3.1 to 3.9
Manganese (Mn), % 5.5 to 7.5
0 to 0.1
Nickel (Ni), % 3.5 to 5.5
0
Nitrogen (N), % 0.1 to 0.25
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0 to 0.25
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15