MakeItFrom.com
Menu (ESC)

S20433 Stainless Steel vs. AISI 309Cb Stainless Steel

Both S20433 stainless steel and AISI 309Cb stainless steel are iron alloys. Both are furnished in the annealed condition. They have 84% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S20433 stainless steel and the bottom bar is AISI 309Cb stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 46
39
Fatigue Strength, MPa 250
200
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 82
84
Shear Modulus, GPa 76
78
Shear Strength, MPa 440
390
Tensile Strength: Ultimate (UTS), MPa 630
580
Tensile Strength: Yield (Proof), MPa 270
230

Thermal Properties

Latent Heat of Fusion, J/g 280
300
Maximum Temperature: Corrosion, °C 410
510
Maximum Temperature: Mechanical, °C 900
1090
Melting Completion (Liquidus), °C 1400
1420
Melting Onset (Solidus), °C 1360
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 13
23
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.7
4.1
Embodied Energy, MJ/kg 39
59
Embodied Water, L/kg 150
170

Common Calculations

PREN (Pitting Resistance) 20
23
Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
180
Resilience: Unit (Modulus of Resilience), kJ/m3 180
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 23
20
Strength to Weight: Bending, points 21
20
Thermal Diffusivity, mm2/s 4.0
4.0
Thermal Shock Resistance, points 14
13

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 17 to 18
22 to 24
Copper (Cu), % 1.5 to 3.5
0
Iron (Fe), % 64.1 to 72.4
56 to 66
Manganese (Mn), % 5.5 to 7.5
0 to 2.0
Nickel (Ni), % 3.5 to 5.5
12 to 16
Niobium (Nb), % 0
0 to 1.1
Nitrogen (N), % 0.1 to 0.25
0
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 0.75
Sulfur (S), % 0 to 0.030
0 to 0.030