MakeItFrom.com
Menu (ESC)

S20433 Stainless Steel vs. Grade 11 Titanium

S20433 stainless steel belongs to the iron alloys classification, while grade 11 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S20433 stainless steel and the bottom bar is grade 11 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
120
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 46
29
Fatigue Strength, MPa 250
170
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
38
Shear Strength, MPa 440
200
Tensile Strength: Ultimate (UTS), MPa 630
310
Tensile Strength: Yield (Proof), MPa 270
230

Thermal Properties

Latent Heat of Fusion, J/g 280
420
Maximum Temperature: Mechanical, °C 900
320
Melting Completion (Liquidus), °C 1400
1660
Melting Onset (Solidus), °C 1360
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 15
22
Thermal Expansion, µm/m-K 17
9.2

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
3.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
7.3

Otherwise Unclassified Properties

Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 2.7
47
Embodied Energy, MJ/kg 39
800
Embodied Water, L/kg 150
470

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
81
Resilience: Unit (Modulus of Resilience), kJ/m3 180
240
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 23
19
Strength to Weight: Bending, points 21
22
Thermal Diffusivity, mm2/s 4.0
8.9
Thermal Shock Resistance, points 14
22

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 17 to 18
0
Copper (Cu), % 1.5 to 3.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 64.1 to 72.4
0 to 0.2
Manganese (Mn), % 5.5 to 7.5
0
Nickel (Ni), % 3.5 to 5.5
0
Nitrogen (N), % 0.1 to 0.25
0 to 0.030
Oxygen (O), % 0
0 to 0.18
Palladium (Pd), % 0
0.12 to 0.25
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
98.8 to 99.88
Residuals, % 0
0 to 0.4