MakeItFrom.com
Menu (ESC)

S20433 Stainless Steel vs. Grade C-2 Titanium

S20433 stainless steel belongs to the iron alloys classification, while grade C-2 titanium belongs to the titanium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S20433 stainless steel and the bottom bar is grade C-2 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
180
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 46
17
Fatigue Strength, MPa 250
200
Poisson's Ratio 0.28
0.32
Rockwell B Hardness 82
84
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 630
390
Tensile Strength: Yield (Proof), MPa 270
310

Thermal Properties

Latent Heat of Fusion, J/g 280
420
Maximum Temperature: Mechanical, °C 900
320
Melting Completion (Liquidus), °C 1400
1660
Melting Onset (Solidus), °C 1360
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 15
21
Thermal Expansion, µm/m-K 17
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
7.1

Otherwise Unclassified Properties

Base Metal Price, % relative 13
37
Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 2.7
31
Embodied Energy, MJ/kg 39
510
Embodied Water, L/kg 150
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
61
Resilience: Unit (Modulus of Resilience), kJ/m3 180
460
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 23
24
Strength to Weight: Bending, points 21
26
Thermal Diffusivity, mm2/s 4.0
8.8
Thermal Shock Resistance, points 14
30

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.1
Chromium (Cr), % 17 to 18
0
Copper (Cu), % 1.5 to 3.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 64.1 to 72.4
0 to 0.2
Manganese (Mn), % 5.5 to 7.5
0
Nickel (Ni), % 3.5 to 5.5
0 to 0.050
Nitrogen (N), % 0.1 to 0.25
0
Oxygen (O), % 0
0 to 0.4
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
98.8 to 100
Residuals, % 0
0 to 0.4