MakeItFrom.com
Menu (ESC)

S20433 Stainless Steel vs. R58150 Titanium

S20433 stainless steel belongs to the iron alloys classification, while R58150 titanium belongs to the titanium alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is S20433 stainless steel and the bottom bar is R58150 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
140
Elongation at Break, % 46
13
Fatigue Strength, MPa 250
330
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
52
Shear Strength, MPa 440
470
Tensile Strength: Ultimate (UTS), MPa 630
770
Tensile Strength: Yield (Proof), MPa 270
550

Thermal Properties

Latent Heat of Fusion, J/g 280
410
Maximum Temperature: Mechanical, °C 900
320
Melting Completion (Liquidus), °C 1400
1760
Melting Onset (Solidus), °C 1360
1700
Specific Heat Capacity, J/kg-K 480
500
Thermal Expansion, µm/m-K 17
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 13
48
Density, g/cm3 7.7
5.4
Embodied Carbon, kg CO2/kg material 2.7
31
Embodied Energy, MJ/kg 39
480
Embodied Water, L/kg 150
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
94
Resilience: Unit (Modulus of Resilience), kJ/m3 180
1110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
32
Strength to Weight: Axial, points 23
40
Strength to Weight: Bending, points 21
35
Thermal Shock Resistance, points 14
48

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.1
Chromium (Cr), % 17 to 18
0
Copper (Cu), % 1.5 to 3.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 64.1 to 72.4
0 to 0.1
Manganese (Mn), % 5.5 to 7.5
0
Molybdenum (Mo), % 0
14 to 16
Nickel (Ni), % 3.5 to 5.5
0
Nitrogen (N), % 0.1 to 0.25
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
83.5 to 86