MakeItFrom.com
Menu (ESC)

S20433 Stainless Steel vs. S82122 Stainless Steel

Both S20433 stainless steel and S82122 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a moderately high 92% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S20433 stainless steel and the bottom bar is S82122 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
260
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 46
34
Fatigue Strength, MPa 250
360
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
78
Shear Strength, MPa 440
460
Tensile Strength: Ultimate (UTS), MPa 630
680
Tensile Strength: Yield (Proof), MPa 270
450

Thermal Properties

Latent Heat of Fusion, J/g 280
290
Maximum Temperature: Corrosion, °C 410
430
Maximum Temperature: Mechanical, °C 900
990
Melting Completion (Liquidus), °C 1400
1420
Melting Onset (Solidus), °C 1360
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 13
12
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 39
37
Embodied Water, L/kg 150
150

Common Calculations

PREN (Pitting Resistance) 20
25
Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
210
Resilience: Unit (Modulus of Resilience), kJ/m3 180
510
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 23
25
Strength to Weight: Bending, points 21
22
Thermal Diffusivity, mm2/s 4.0
4.0
Thermal Shock Resistance, points 14
19

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 17 to 18
20.5 to 21.5
Copper (Cu), % 1.5 to 3.5
0.5 to 1.5
Iron (Fe), % 64.1 to 72.4
68.9 to 75.4
Manganese (Mn), % 5.5 to 7.5
2.0 to 4.0
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 3.5 to 5.5
1.5 to 2.5
Nitrogen (N), % 0.1 to 0.25
0.15 to 0.2
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 0.75
Sulfur (S), % 0 to 0.030
0 to 0.020