MakeItFrom.com
Menu (ESC)

S20910 Stainless Steel vs. ASTM Grade LCA Steel

Both S20910 stainless steel and ASTM grade LCA steel are iron alloys. They have 58% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S20910 stainless steel and the bottom bar is ASTM grade LCA steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 14 to 39
27
Fatigue Strength, MPa 310 to 460
170
Poisson's Ratio 0.28
0.29
Reduction in Area, % 56 to 62
40
Shear Modulus, GPa 79
72
Tensile Strength: Ultimate (UTS), MPa 780 to 940
500
Tensile Strength: Yield (Proof), MPa 430 to 810
230

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1080
400
Melting Completion (Liquidus), °C 1420
1460
Melting Onset (Solidus), °C 1380
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 13
49
Thermal Expansion, µm/m-K 16
12

Otherwise Unclassified Properties

Base Metal Price, % relative 22
1.9
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 4.8
1.4
Embodied Energy, MJ/kg 68
19
Embodied Water, L/kg 180
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 260
110
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 1640
150
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 28 to 33
18
Strength to Weight: Bending, points 24 to 27
18
Thermal Diffusivity, mm2/s 3.6
14
Thermal Shock Resistance, points 17 to 21
16

Alloy Composition

Carbon (C), % 0 to 0.060
0 to 0.25
Chromium (Cr), % 20.5 to 23.5
0
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 52.1 to 62.1
96.9 to 100
Manganese (Mn), % 4.0 to 6.0
0 to 0.7
Molybdenum (Mo), % 1.5 to 3.0
0 to 0.2
Nickel (Ni), % 11.5 to 13.5
0
Niobium (Nb), % 0.1 to 0.3
0
Nitrogen (N), % 0.2 to 0.4
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.045
Vanadium (V), % 0.1 to 0.3
0
Residuals, % 0
0 to 1.0