MakeItFrom.com
Menu (ESC)

S20910 Stainless Steel vs. Grade 3 Titanium

S20910 stainless steel belongs to the iron alloys classification, while grade 3 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S20910 stainless steel and the bottom bar is grade 3 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 230 to 290
170
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 14 to 39
21
Fatigue Strength, MPa 310 to 460
300
Poisson's Ratio 0.28
0.32
Reduction in Area, % 56 to 62
34
Shear Modulus, GPa 79
39
Shear Strength, MPa 500 to 570
320
Tensile Strength: Ultimate (UTS), MPa 780 to 940
510
Tensile Strength: Yield (Proof), MPa 430 to 810
440

Thermal Properties

Latent Heat of Fusion, J/g 300
420
Maximum Temperature: Mechanical, °C 1080
320
Melting Completion (Liquidus), °C 1420
1660
Melting Onset (Solidus), °C 1380
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 13
21
Thermal Expansion, µm/m-K 16
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 22
37
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 4.8
31
Embodied Energy, MJ/kg 68
510
Embodied Water, L/kg 180
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 260
100
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 1640
910
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 28 to 33
32
Strength to Weight: Bending, points 24 to 27
32
Thermal Diffusivity, mm2/s 3.6
8.6
Thermal Shock Resistance, points 17 to 21
37

Alloy Composition

Carbon (C), % 0 to 0.060
0 to 0.080
Chromium (Cr), % 20.5 to 23.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 52.1 to 62.1
0 to 0.3
Manganese (Mn), % 4.0 to 6.0
0
Molybdenum (Mo), % 1.5 to 3.0
0
Nickel (Ni), % 11.5 to 13.5
0
Niobium (Nb), % 0.1 to 0.3
0
Nitrogen (N), % 0.2 to 0.4
0 to 0.050
Oxygen (O), % 0
0 to 0.35
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
98.8 to 100
Vanadium (V), % 0.1 to 0.3
0
Residuals, % 0
0 to 0.4