MakeItFrom.com
Menu (ESC)

S20910 Stainless Steel vs. C43500 Brass

S20910 stainless steel belongs to the iron alloys classification, while C43500 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is S20910 stainless steel and the bottom bar is C43500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 14 to 39
8.5 to 46
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 79
42
Shear Strength, MPa 500 to 570
220 to 310
Tensile Strength: Ultimate (UTS), MPa 780 to 940
320 to 530
Tensile Strength: Yield (Proof), MPa 430 to 810
120 to 480

Thermal Properties

Latent Heat of Fusion, J/g 300
190
Maximum Temperature: Mechanical, °C 1080
160
Melting Completion (Liquidus), °C 1420
1000
Melting Onset (Solidus), °C 1380
970
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 13
120
Thermal Expansion, µm/m-K 16
19

Otherwise Unclassified Properties

Base Metal Price, % relative 22
28
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 4.8
2.7
Embodied Energy, MJ/kg 68
45
Embodied Water, L/kg 180
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 260
44 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 1640
65 to 1040
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 28 to 33
10 to 17
Strength to Weight: Bending, points 24 to 27
12 to 17
Thermal Diffusivity, mm2/s 3.6
37
Thermal Shock Resistance, points 17 to 21
11 to 18

Alloy Composition

Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 20.5 to 23.5
0
Copper (Cu), % 0
79 to 83
Iron (Fe), % 52.1 to 62.1
0 to 0.050
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 4.0 to 6.0
0
Molybdenum (Mo), % 1.5 to 3.0
0
Nickel (Ni), % 11.5 to 13.5
0
Niobium (Nb), % 0.1 to 0.3
0
Nitrogen (N), % 0.2 to 0.4
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.6 to 1.2
Vanadium (V), % 0.1 to 0.3
0
Zinc (Zn), % 0
15.4 to 20.4
Residuals, % 0
0 to 0.3