MakeItFrom.com
Menu (ESC)

S20910 Stainless Steel vs. C82000 Copper

S20910 stainless steel belongs to the iron alloys classification, while C82000 copper belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is S20910 stainless steel and the bottom bar is C82000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 14 to 39
8.0 to 20
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 79
45
Tensile Strength: Ultimate (UTS), MPa 780 to 940
350 to 690
Tensile Strength: Yield (Proof), MPa 430 to 810
140 to 520

Thermal Properties

Latent Heat of Fusion, J/g 300
220
Maximum Temperature: Mechanical, °C 1080
220
Melting Completion (Liquidus), °C 1420
1090
Melting Onset (Solidus), °C 1380
970
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 13
260
Thermal Expansion, µm/m-K 16
17

Otherwise Unclassified Properties

Base Metal Price, % relative 22
60
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 4.8
5.0
Embodied Energy, MJ/kg 68
77
Embodied Water, L/kg 180
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 260
51 to 55
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 1640
80 to 1120
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 28 to 33
11 to 22
Strength to Weight: Bending, points 24 to 27
12 to 20
Thermal Diffusivity, mm2/s 3.6
76
Thermal Shock Resistance, points 17 to 21
12 to 24

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Beryllium (Be), % 0
0.45 to 0.8
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 20.5 to 23.5
0 to 0.1
Cobalt (Co), % 0
2.2 to 2.7
Copper (Cu), % 0
95.2 to 97.4
Iron (Fe), % 52.1 to 62.1
0 to 0.1
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 4.0 to 6.0
0
Molybdenum (Mo), % 1.5 to 3.0
0
Nickel (Ni), % 11.5 to 13.5
0 to 0.2
Niobium (Nb), % 0.1 to 0.3
0
Nitrogen (N), % 0.2 to 0.4
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.75
0 to 0.15
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.1
Vanadium (V), % 0.1 to 0.3
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5