MakeItFrom.com
Menu (ESC)

S21460 Stainless Steel vs. 2095 Aluminum

S21460 stainless steel belongs to the iron alloys classification, while 2095 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S21460 stainless steel and the bottom bar is 2095 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 46
8.5
Fatigue Strength, MPa 390
200
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 580
410
Tensile Strength: Ultimate (UTS), MPa 830
700
Tensile Strength: Yield (Proof), MPa 430
610

Thermal Properties

Latent Heat of Fusion, J/g 290
390
Maximum Temperature: Mechanical, °C 920
210
Melting Completion (Liquidus), °C 1380
660
Melting Onset (Solidus), °C 1330
540
Specific Heat Capacity, J/kg-K 480
910
Thermal Expansion, µm/m-K 18
23

Otherwise Unclassified Properties

Base Metal Price, % relative 14
31
Density, g/cm3 7.6
3.0
Embodied Carbon, kg CO2/kg material 3.0
8.6
Embodied Energy, MJ/kg 43
160
Embodied Water, L/kg 160
1470

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
57
Resilience: Unit (Modulus of Resilience), kJ/m3 460
2640
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 30
65
Strength to Weight: Bending, points 26
59
Thermal Shock Resistance, points 17
31

Alloy Composition

Aluminum (Al), % 0
91.3 to 94.9
Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0
3.9 to 4.6
Iron (Fe), % 57.3 to 63.7
0 to 0.15
Lithium (Li), % 0
0.7 to 1.5
Magnesium (Mg), % 0
0.25 to 0.8
Manganese (Mn), % 14 to 16
0 to 0.25
Nickel (Ni), % 5.0 to 6.0
0
Nitrogen (N), % 0.35 to 0.5
0
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 0 to 1.0
0 to 0.12
Silver (Ag), % 0
0.25 to 0.6
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0.040 to 0.18
Residuals, % 0
0 to 0.15