MakeItFrom.com
Menu (ESC)

S21460 Stainless Steel vs. 2618 Aluminum

S21460 stainless steel belongs to the iron alloys classification, while 2618 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S21460 stainless steel and the bottom bar is 2618 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
120
Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 46
5.8
Fatigue Strength, MPa 390
110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Shear Strength, MPa 580
260
Tensile Strength: Ultimate (UTS), MPa 830
420
Tensile Strength: Yield (Proof), MPa 430
350

Thermal Properties

Latent Heat of Fusion, J/g 290
390
Maximum Temperature: Mechanical, °C 920
210
Melting Completion (Liquidus), °C 1380
640
Melting Onset (Solidus), °C 1330
550
Specific Heat Capacity, J/kg-K 480
880
Thermal Expansion, µm/m-K 18
22

Otherwise Unclassified Properties

Base Metal Price, % relative 14
11
Density, g/cm3 7.6
2.9
Embodied Carbon, kg CO2/kg material 3.0
8.3
Embodied Energy, MJ/kg 43
150
Embodied Water, L/kg 160
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
23
Resilience: Unit (Modulus of Resilience), kJ/m3 460
850
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
47
Strength to Weight: Axial, points 30
40
Strength to Weight: Bending, points 26
42
Thermal Shock Resistance, points 17
19

Alloy Composition

Aluminum (Al), % 0
92.4 to 94.9
Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0
1.9 to 2.7
Iron (Fe), % 57.3 to 63.7
0.9 to 1.3
Magnesium (Mg), % 0
1.3 to 1.8
Manganese (Mn), % 14 to 16
0
Nickel (Ni), % 5.0 to 6.0
0.9 to 1.2
Nitrogen (N), % 0.35 to 0.5
0
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 0 to 1.0
0.1 to 0.25
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0.040 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15