MakeItFrom.com
Menu (ESC)

S21460 Stainless Steel vs. 5088 Aluminum

S21460 stainless steel belongs to the iron alloys classification, while 5088 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S21460 stainless steel and the bottom bar is 5088 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 46
29
Fatigue Strength, MPa 390
180
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
25
Shear Strength, MPa 580
200
Tensile Strength: Ultimate (UTS), MPa 830
310
Tensile Strength: Yield (Proof), MPa 430
150

Thermal Properties

Latent Heat of Fusion, J/g 290
390
Maximum Temperature: Mechanical, °C 920
200
Melting Completion (Liquidus), °C 1380
640
Melting Onset (Solidus), °C 1330
540
Specific Heat Capacity, J/kg-K 480
900
Thermal Expansion, µm/m-K 18
24

Otherwise Unclassified Properties

Base Metal Price, % relative 14
9.5
Density, g/cm3 7.6
2.7
Embodied Carbon, kg CO2/kg material 3.0
9.0
Embodied Energy, MJ/kg 43
150
Embodied Water, L/kg 160
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
76
Resilience: Unit (Modulus of Resilience), kJ/m3 460
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 30
32
Strength to Weight: Bending, points 26
38
Thermal Shock Resistance, points 17
14

Alloy Composition

Aluminum (Al), % 0
92.4 to 94.8
Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 17 to 19
0 to 0.15
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 57.3 to 63.7
0.1 to 0.35
Magnesium (Mg), % 0
4.7 to 5.5
Manganese (Mn), % 14 to 16
0.2 to 0.5
Nickel (Ni), % 5.0 to 6.0
0
Nitrogen (N), % 0.35 to 0.5
0
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0.2 to 0.4
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0
0 to 0.15