MakeItFrom.com
Menu (ESC)

S21460 Stainless Steel vs. A535.0 Aluminum

S21460 stainless steel belongs to the iron alloys classification, while A535.0 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S21460 stainless steel and the bottom bar is A535.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
67
Elongation at Break, % 46
9.0
Fatigue Strength, MPa 390
95
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
25
Tensile Strength: Ultimate (UTS), MPa 830
250
Tensile Strength: Yield (Proof), MPa 430
120

Thermal Properties

Latent Heat of Fusion, J/g 290
390
Maximum Temperature: Mechanical, °C 920
170
Melting Completion (Liquidus), °C 1380
620
Melting Onset (Solidus), °C 1330
550
Specific Heat Capacity, J/kg-K 480
910
Thermal Expansion, µm/m-K 18
24

Otherwise Unclassified Properties

Base Metal Price, % relative 14
9.5
Density, g/cm3 7.6
2.6
Embodied Carbon, kg CO2/kg material 3.0
9.3
Embodied Energy, MJ/kg 43
160
Embodied Water, L/kg 160
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
19
Resilience: Unit (Modulus of Resilience), kJ/m3 460
120
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 30
26
Strength to Weight: Bending, points 26
33
Thermal Shock Resistance, points 17
11

Alloy Composition

Aluminum (Al), % 0
91.4 to 93.4
Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 57.3 to 63.7
0 to 0.2
Magnesium (Mg), % 0
6.5 to 7.5
Manganese (Mn), % 14 to 16
0.1 to 0.25
Nickel (Ni), % 5.0 to 6.0
0
Nitrogen (N), % 0.35 to 0.5
0
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Residuals, % 0
0 to 0.15