MakeItFrom.com
Menu (ESC)

S21460 Stainless Steel vs. EN AC-51300 Aluminum

S21460 stainless steel belongs to the iron alloys classification, while EN AC-51300 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S21460 stainless steel and the bottom bar is EN AC-51300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
65
Elastic (Young's, Tensile) Modulus, GPa 200
67
Elongation at Break, % 46
3.7
Fatigue Strength, MPa 390
78
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
25
Tensile Strength: Ultimate (UTS), MPa 830
190
Tensile Strength: Yield (Proof), MPa 430
110

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 920
170
Melting Completion (Liquidus), °C 1380
640
Melting Onset (Solidus), °C 1330
600
Specific Heat Capacity, J/kg-K 480
910
Thermal Expansion, µm/m-K 18
24

Otherwise Unclassified Properties

Base Metal Price, % relative 14
9.5
Density, g/cm3 7.6
2.7
Embodied Carbon, kg CO2/kg material 3.0
9.1
Embodied Energy, MJ/kg 43
150
Embodied Water, L/kg 160
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
6.1
Resilience: Unit (Modulus of Resilience), kJ/m3 460
87
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 30
20
Strength to Weight: Bending, points 26
28
Thermal Shock Resistance, points 17
8.6

Alloy Composition

Aluminum (Al), % 0
91.4 to 95.5
Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 57.3 to 63.7
0 to 0.55
Magnesium (Mg), % 0
4.5 to 6.5
Manganese (Mn), % 14 to 16
0 to 0.45
Nickel (Ni), % 5.0 to 6.0
0
Nitrogen (N), % 0.35 to 0.5
0
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 0 to 1.0
0 to 0.55
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15