MakeItFrom.com
Menu (ESC)

S21460 Stainless Steel vs. R58150 Titanium

S21460 stainless steel belongs to the iron alloys classification, while R58150 titanium belongs to the titanium alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S21460 stainless steel and the bottom bar is R58150 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
140
Elongation at Break, % 46
13
Fatigue Strength, MPa 390
330
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
52
Shear Strength, MPa 580
470
Tensile Strength: Ultimate (UTS), MPa 830
770
Tensile Strength: Yield (Proof), MPa 430
550

Thermal Properties

Latent Heat of Fusion, J/g 290
410
Maximum Temperature: Mechanical, °C 920
320
Melting Completion (Liquidus), °C 1380
1760
Melting Onset (Solidus), °C 1330
1700
Specific Heat Capacity, J/kg-K 480
500
Thermal Expansion, µm/m-K 18
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 14
48
Density, g/cm3 7.6
5.4
Embodied Carbon, kg CO2/kg material 3.0
31
Embodied Energy, MJ/kg 43
480
Embodied Water, L/kg 160
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
94
Resilience: Unit (Modulus of Resilience), kJ/m3 460
1110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
32
Strength to Weight: Axial, points 30
40
Strength to Weight: Bending, points 26
35
Thermal Shock Resistance, points 17
48

Alloy Composition

Carbon (C), % 0 to 0.12
0 to 0.1
Chromium (Cr), % 17 to 19
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 57.3 to 63.7
0 to 0.1
Manganese (Mn), % 14 to 16
0
Molybdenum (Mo), % 0
14 to 16
Nickel (Ni), % 5.0 to 6.0
0
Nitrogen (N), % 0.35 to 0.5
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
83.5 to 86