MakeItFrom.com
Menu (ESC)

S21603 Stainless Steel vs. C66300 Brass

S21603 stainless steel belongs to the iron alloys classification, while C66300 brass belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is S21603 stainless steel and the bottom bar is C66300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 45
2.3 to 22
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
42
Shear Strength, MPa 490
290 to 470
Tensile Strength: Ultimate (UTS), MPa 690
460 to 810
Tensile Strength: Yield (Proof), MPa 390
400 to 800

Thermal Properties

Latent Heat of Fusion, J/g 290
200
Maximum Temperature: Mechanical, °C 990
180
Melting Completion (Liquidus), °C 1420
1050
Melting Onset (Solidus), °C 1380
1000
Specific Heat Capacity, J/kg-K 480
380
Thermal Expansion, µm/m-K 17
18

Otherwise Unclassified Properties

Base Metal Price, % relative 17
29
Density, g/cm3 7.7
8.6
Embodied Carbon, kg CO2/kg material 3.6
2.8
Embodied Energy, MJ/kg 50
46
Embodied Water, L/kg 160
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
17 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 380
710 to 2850
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 25
15 to 26
Strength to Weight: Bending, points 22
15 to 22
Thermal Shock Resistance, points 15
16 to 28

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 17.5 to 22
0
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 0
84.5 to 87.5
Iron (Fe), % 57.6 to 67.8
1.4 to 2.4
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 7.5 to 9.0
0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 5.0 to 7.0
0
Nitrogen (N), % 0.25 to 0.5
0
Phosphorus (P), % 0 to 0.045
0 to 0.35
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
1.5 to 3.0
Zinc (Zn), % 0
6.0 to 12.8
Residuals, % 0
0 to 0.5