MakeItFrom.com
Menu (ESC)

S21800 Stainless Steel vs. 5049 Aluminum

S21800 stainless steel belongs to the iron alloys classification, while 5049 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S21800 stainless steel and the bottom bar is 5049 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
52 to 88
Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 40
2.0 to 18
Fatigue Strength, MPa 330
79 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
26
Shear Strength, MPa 510
130 to 190
Tensile Strength: Ultimate (UTS), MPa 740
210 to 330
Tensile Strength: Yield (Proof), MPa 390
91 to 280

Thermal Properties

Latent Heat of Fusion, J/g 340
400
Maximum Temperature: Mechanical, °C 900
190
Melting Completion (Liquidus), °C 1360
650
Melting Onset (Solidus), °C 1310
620
Specific Heat Capacity, J/kg-K 500
900
Thermal Expansion, µm/m-K 16
24

Otherwise Unclassified Properties

Base Metal Price, % relative 15
9.5
Density, g/cm3 7.5
2.7
Embodied Carbon, kg CO2/kg material 3.1
8.5
Embodied Energy, MJ/kg 45
150
Embodied Water, L/kg 150
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
6.0 to 31
Resilience: Unit (Modulus of Resilience), kJ/m3 390
59 to 570
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 26
50
Strength to Weight: Axial, points 27
22 to 34
Strength to Weight: Bending, points 24
29 to 39
Thermal Shock Resistance, points 17
9.3 to 15

Alloy Composition

Aluminum (Al), % 0
94.7 to 97.9
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 16 to 18
0 to 0.3
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 59.1 to 65.4
0 to 0.5
Magnesium (Mg), % 0
1.6 to 2.5
Manganese (Mn), % 7.0 to 9.0
0.5 to 1.1
Nickel (Ni), % 8.0 to 9.0
0
Nitrogen (N), % 0.080 to 0.18
0
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 3.5 to 4.5
0 to 0.4
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15