S21800 Stainless Steel vs. EN 1.7220 Steel
Both S21800 stainless steel and EN 1.7220 steel are iron alloys. They have 64% of their average alloy composition in common. There are 21 material properties with values for both materials. Properties with values for just one material (15, in this case) are not shown.
For each property being compared, the top bar is S21800 stainless steel and the bottom bar is EN 1.7220 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 210 | |
160 to 290 |
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
190 |
Poisson's Ratio | 0.28 | |
0.29 |
Shear Modulus, GPa | 75 | |
73 |
Tensile Strength: Ultimate (UTS), MPa | 740 | |
520 to 1720 |
Thermal Properties
Latent Heat of Fusion, J/g | 340 | |
250 |
Maximum Temperature: Mechanical, °C | 900 | |
420 |
Melting Completion (Liquidus), °C | 1360 | |
1460 |
Melting Onset (Solidus), °C | 1310 | |
1420 |
Specific Heat Capacity, J/kg-K | 500 | |
470 |
Thermal Expansion, µm/m-K | 16 | |
13 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 15 | |
2.5 |
Density, g/cm3 | 7.5 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 3.1 | |
1.5 |
Embodied Energy, MJ/kg | 45 | |
20 |
Embodied Water, L/kg | 150 | |
51 |
Common Calculations
Stiffness to Weight: Axial, points | 14 | |
13 |
Stiffness to Weight: Bending, points | 26 | |
24 |
Strength to Weight: Axial, points | 27 | |
18 to 61 |
Strength to Weight: Bending, points | 24 | |
18 to 41 |
Thermal Shock Resistance, points | 17 | |
15 to 50 |
Alloy Composition
Carbon (C), % | 0 to 0.1 | |
0.3 to 0.37 |
Chromium (Cr), % | 16 to 18 | |
0.9 to 1.2 |
Iron (Fe), % | 59.1 to 65.4 | |
96.8 to 98.1 |
Manganese (Mn), % | 7.0 to 9.0 | |
0.6 to 0.9 |
Molybdenum (Mo), % | 0 | |
0.15 to 0.3 |
Nickel (Ni), % | 8.0 to 9.0 | |
0 |
Nitrogen (N), % | 0.080 to 0.18 | |
0 |
Phosphorus (P), % | 0 to 0.060 | |
0 to 0.035 |
Silicon (Si), % | 3.5 to 4.5 | |
0 to 0.4 |
Sulfur (S), % | 0 to 0.030 | |
0 to 0.035 |