MakeItFrom.com
Menu (ESC)

S21900 Stainless Steel vs. ASTM A387 Grade 21L Class 1

Both S21900 stainless steel and ASTM A387 grade 21L class 1 are iron alloys. Both are furnished in the annealed condition. They have 67% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S21900 stainless steel and the bottom bar is ASTM A387 grade 21L class 1.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
150
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 50
21
Fatigue Strength, MPa 380
160
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
74
Shear Strength, MPa 510
310
Tensile Strength: Ultimate (UTS), MPa 710
500
Tensile Strength: Yield (Proof), MPa 390
230

Thermal Properties

Latent Heat of Fusion, J/g 290
260
Maximum Temperature: Mechanical, °C 980
480
Melting Completion (Liquidus), °C 1400
1470
Melting Onset (Solidus), °C 1350
1430
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 14
41
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 15
4.1
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 3.0
1.8
Embodied Energy, MJ/kg 43
23
Embodied Water, L/kg 160
62

Common Calculations

PREN (Pitting Resistance) 25
6.4
Resilience: Ultimate (Unit Rupture Work), MJ/m3 300
84
Resilience: Unit (Modulus of Resilience), kJ/m3 380
140
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 26
18
Strength to Weight: Bending, points 23
18
Thermal Diffusivity, mm2/s 3.8
11
Thermal Shock Resistance, points 15
14

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.1
Chromium (Cr), % 19 to 21.5
2.8 to 3.3
Iron (Fe), % 59.4 to 67.4
94.4 to 96.1
Manganese (Mn), % 8.0 to 10
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 5.5 to 7.5
0
Nitrogen (N), % 0.15 to 0.4
0
Phosphorus (P), % 0 to 0.045
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.025