MakeItFrom.com
Menu (ESC)

S21900 Stainless Steel vs. EN 1.4516 Stainless Steel

Both S21900 stainless steel and EN 1.4516 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 77% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S21900 stainless steel and the bottom bar is EN 1.4516 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 50
23
Fatigue Strength, MPa 380
210
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
76
Shear Strength, MPa 510
350
Tensile Strength: Ultimate (UTS), MPa 710
550
Tensile Strength: Yield (Proof), MPa 390
320

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Corrosion, °C 420
420
Maximum Temperature: Mechanical, °C 980
720
Melting Completion (Liquidus), °C 1400
1450
Melting Onset (Solidus), °C 1350
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 14
30
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 15
7.0
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 3.0
2.0
Embodied Energy, MJ/kg 43
28
Embodied Water, L/kg 160
97

Common Calculations

PREN (Pitting Resistance) 25
12
Resilience: Ultimate (Unit Rupture Work), MJ/m3 300
110
Resilience: Unit (Modulus of Resilience), kJ/m3 380
260
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 26
20
Strength to Weight: Bending, points 23
19
Thermal Diffusivity, mm2/s 3.8
8.1
Thermal Shock Resistance, points 15
20

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 19 to 21.5
10.5 to 12.5
Iron (Fe), % 59.4 to 67.4
83.3 to 89
Manganese (Mn), % 8.0 to 10
0 to 1.5
Nickel (Ni), % 5.5 to 7.5
0.5 to 1.5
Nitrogen (N), % 0.15 to 0.4
0
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 0.7
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0
0.050 to 0.35