MakeItFrom.com
Menu (ESC)

S21900 Stainless Steel vs. EN 1.8867 Steel

Both S21900 stainless steel and EN 1.8867 steel are iron alloys. They have 65% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S21900 stainless steel and the bottom bar is EN 1.8867 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
160
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 50
25
Fatigue Strength, MPa 380
260
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
73
Shear Strength, MPa 510
350
Tensile Strength: Ultimate (UTS), MPa 710
540
Tensile Strength: Yield (Proof), MPa 390
360

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 980
410
Melting Completion (Liquidus), °C 1400
1460
Melting Onset (Solidus), °C 1350
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 14
48
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 15
2.4
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 3.0
1.6
Embodied Energy, MJ/kg 43
21
Embodied Water, L/kg 160
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 300
120
Resilience: Unit (Modulus of Resilience), kJ/m3 380
340
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 26
19
Strength to Weight: Bending, points 23
19
Thermal Diffusivity, mm2/s 3.8
13
Thermal Shock Resistance, points 15
16

Alloy Composition

Boron (B), % 0
0 to 0.0050
Carbon (C), % 0 to 0.080
0 to 0.16
Chromium (Cr), % 19 to 21.5
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 59.4 to 67.4
96.3 to 100
Manganese (Mn), % 8.0 to 10
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.25
Nickel (Ni), % 5.5 to 7.5
0 to 0.5
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0.15 to 0.4
0 to 0.015
Phosphorus (P), % 0 to 0.045
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.060
Zirconium (Zr), % 0
0 to 0.050